CAPÍTULO 26

15E. Considere uma carga puntiforme $q = +1.0 \,\mu C$ e dois pontos A e B que distam, respectivamente, $2.0 \,m$ e $1.0 \,m$ da carga. (a) Tomando tais pontos diametralmente opostos, como mostra a Figura 26-27a, qual é a diferença de potencial $V_A - V_B$? (b) Repita o item (a) considerando os pontos A e B localizados como mostra a Figura 26-27b.

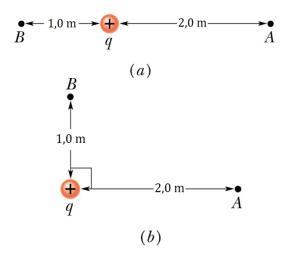


Fig. 26-27 Exercício 15.

16E. Considere uma carga puntiforme $q = 1.5 \times 10^{-8} C$ e tome V = 0 no infinito. (a) Quais são a forma e as dimensões de uma superfície equipotencial que tem um potencial de 30 V graças somente a q? (b) Estão igualmente espaçadas as superfícies cujos potenciais diferem de uma quantidade constante, digamos, 1.0 V?

26P. Uma gota esférica de água transportando uma carga de 30 pC tem um potencial de 500 V em sua superfície (com V = 0 no infinito). (a) Qual é o raio da gota? (b) Se duas gotas iguais a esta, com a mesma carga e o mesmo raio, se juntarem para constituir uma única gota, esférica, qual será o potencial na superfície da nova gota?

28E. Na Fig. 26-30, considerando V = 0 no infinito, localize (em termos de d) um ponto sobre o eixo x (que não esteja no infinito) onde o potencial devido às duas cargas seja nulo.

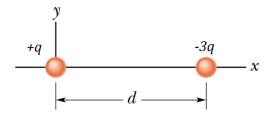


Fig. 26-30 Exercício 28.

34P. Na Fig. 26-33, qual é o potencial resultante no ponto P devido às quatro cargas puntiformes, tomando-se V = 0 no infinito?

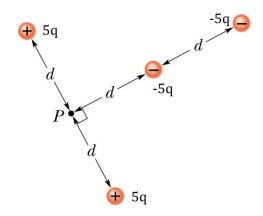


Fig. 26-33 Problema 34.

35P. Na Fig. 26-34, o ponto P está no centro do retângulo. Com V = 0 no infinito, qual é o potencial resultante em P por causa das seis cargas puntiformes?

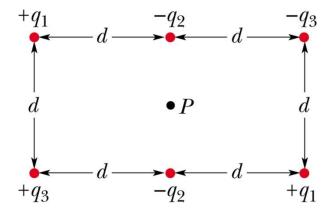


Fig. 26-34 Exercício 35.

36E. (a) A Fig. 26-35a mostra uma barra fina de plástico com carga positiva, de comprimento L e densidade linear de carga uniforme λ . Fazendo V=0 no infinito e considerando a Fig. 26-13 e a Eq. 26-35 (mostradas a seguir), determine o potencial elétrico no ponto P sem fazer cálculo. (b) A Fig. 26-35b mostra uma barra idêntica, exceto que ela está dividida ao meio e a metade direita está com carga negativa: as metades direita e esquerda tem o mesmo módulo λ para a densidade linear de carga uniforme. Qual é o potencial elétrico no ponto P na Fig. 26-35b?

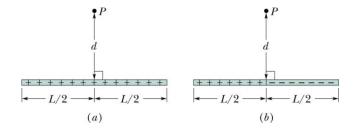
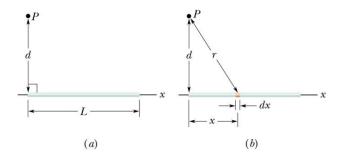



Fig. 26-35 Exercício 36.

Fig. 26-13 Uma barra fina uniformemente carregada produz um potencial elétrico V no ponto P. (b) Um elemento de carga produz um diferencial dV em P.

$$V = \frac{\lambda}{4\pi\varepsilon_0} \ln \left[\frac{L + (L^2 + d^2)^{1/2}}{d} \right].$$
 (26-35)

Eq. 26-35 Potencial elétrico *V* produzido por uma distribuição linear de carga num ponto *P*.

37E. Na Fig. 26-36, uma barra fina de plástico, tendo uma carga – Q uniformemente distribuída, foi curvada num arco de círculo de raio R e ângulo central de $\phi = 120^{\circ}$. Com V = 0 no infinito, qual é o potencial elétrico em P, o centro de curvatura da barra?

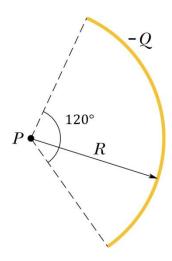


Fig. 26-36 Exercício 37.

38P. (a) Na Fig. 26-37a, qual é o potencial no ponto P devido à carga Q a uma distância R de P? Faça V = 0 no infinito. (b) Na Fig. 26-37b, a

mesma carga Q foi espalhada sobre um arco de círculo de raio R e ângulo central 40°. Qual é o potencial no ponto P, o centro de curvatura do arco? (c) Na Fig. 26-37c, a mesma carga Q foi espalhada sobre um círculo de raio R. Qual é o potencial no ponto P, o centro do círculo? (d) Ordene as três situações de acordo com o módulo do campo elétrico que é criado em P, do maior para o menor.

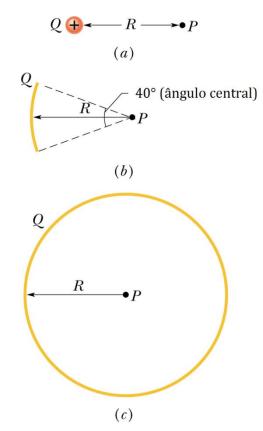


Fig. 26-37 Problema 38.

40P. Um disco de plástico é carregado sobre um lado com uma densidade superficial de carga σ e, a seguir, três quadrantes do disco são retirados. O quadrante que resta é mostrado na Fig. 26-39. Com V=0 no infinito, qual o potencial criado por esse quadrante no ponto P, que está sobre o eixo central do disco original a uma distância z do centro original?

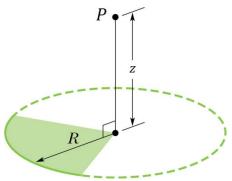


Fig. 26-39 Problema 40.

41P. Qual é o potencial criado no ponto P na Fig. 26-40, a uma distância d da extremidade esquerda de uma barra fina de plástico de comprimento L e carga total -Q? A carga está distribuída uniformemente e V=0 no infinito.

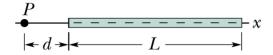


Fig. 26-40 Problema 41.

Respostas

Capítulo 26:

15. (a)
$$-4.500 V$$
. (b) $-4.500 V$. 26.(a) $R = 5.4 x$
10⁻¹² m (b) $V = 800 V$ 28. $x = \frac{d}{4}$ 34. $V = \frac{5q}{8\pi\epsilon0d}$
35. $\frac{-8}{4\pi\epsilon_0} \frac{e}{d}$. 36. (a) $V = \frac{2\lambda}{4\pi\epsilon0} \ln\left[\frac{L/2 + \sqrt{L^2/4 + d^2}}{d}\right]$ (b) $V = 0$ 37. $\frac{-1}{4\pi\epsilon_0} \frac{Q}{R}$. 38. (a) $V = \frac{Q}{4\pi\epsilon0R}$ (b) $V = \frac{Q}{4\pi\epsilon0R}$ (c) $V = \frac{Q}{4\pi\epsilon0R}$ d) $V = \frac{Q}{4\pi\epsilon0R}$ (c) $V = \frac{Q}{4\pi\epsilon0R}$ d) 41. $V = \frac{Q}{4\pi\epsilon_0}$ ln $V = \frac{Q}{$